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The highly enantioselective construction of all-carbon quater-

nary stereogenic centres via Rh-catalyzed Chiraphos-mediated

conjugate addition of alkenylboronic acids to b,b-disubstituted

a,b-unsaturated 2-pyridylsulfones is described.

Although much progress has been achieved in recent years, the

highly efficient enantioselective formation of all-carbon quaternary

stereogenic centres by asymmetric catalytic methods remains a

great challenge in organic synthesis.1,2 Considering the broad scope

and excellent enantioselectivities described in the last decade in the

construction of tertiary stereogenic carbon centres by catalytic

asymmetric conjugate addition (ACA) reactions to a,b-unsatu-

rated carbonyls and related compounds,3 a seemingly straight-

forward alternative to the enantioselective formation of

quaternary stereogenic centers would be the catalytic ACA to

b,b-disubstituted Michael acceptors. However, this approach

must overcome a serious difficulty: the well-known reluctance of

these substituted Michael substrates to undergo intermolecular

conjugate addition due to steric reasons.

In fact, only very recently, in 2005, the first two catalytic

enantioselective procedures based on this type of ACA process

have been described, both involving Cu-mediated reactions. Thus,

Hoveyda et al. have described the highly enantioselective addition

of dialkylzinc reagents to b-aryl b-alkyl nitroalkenes,4 while

Alexakis et al. have reported the highly enantioselective addition

of trialkylalanes to trialkyl-substituted cyclohexenones.5 These

very recent publications have prompted us to report our

concomitant results in this arena. In particular, we describe herein

that the Rh-catalyzed Chiraphos-mediated addition of alkenyl-

boronic acids to b-aryl b-alkyl substituted vinyl pyridylsulfones

takes place with very high enantioselectivity (88–. 99% ee). In

addition, the versatile reactivity of the sulfonyl group offers wide

possibilities for its further transformation into a variety of carbon

functional groups having a close quaternary stereocenter.

As a starting point, taking into account our previous results on

the Rh-catalyzed addition of arylboronic acids to differently

substituted vinyl sulfones,6 we reasoned that using the combination

of the potentially rhodium coordinating 2-pyridylsulfonyl group at

the Michael acceptor (chelation-assisted effect) and a sterically low

hindered nucleophile, such as alkenylboronic acids, the sluggish

character of trisubstituted substrates could be overcome.

To test this hypothesis the vinyl sulfones 1a,b were readily

prepared in satisfactory overall yields by addition of the carbanion

of pyridyl methyl sulfone to the corresponding acetophenone and

further stereoselective dehydration (Scheme 1).

Unlike the behaviour of disubstituted 2-pyridylsulfones, no

reaction or very low conversions (, 20%) were observed after

treatment of the trisubstituted alkene 1a with p-fluorophenyl-

boronic acid in the presence of Rh(acac)(C2H4)2 as catalyst and a

variety of chiral ligands in dioxane–H2O at 100 uC.7 However,

to our delight, a smooth and clean reaction was observed

when (E)-styrylboronic acid was used as nucleophile and

(S,S)-Chiraphos as ligand (5 mol%), reaching 65% conversion

after 24 h and providing the addition product 2a in 94% ee

(HPLC, Daicel Chiralcel OD column). At that point, we

confirmed that both the pyridylsulfonyl group and Chiraphos

ligand were essential to the success of the conjugate addition. For

instance, no reaction at all occurred either after treatment of 1a

with styrylboronic acid in the presence of Binap as ligand or after

heating the phenylsulfone analogue of 1a with styrylboronic acid

under the same Rh(acac)(C2H4)2/Chiraphos mediated reaction

conditions, suggesting the participation of a key Rh-chelation

effect in the case of the pyridylsulfone substrate.

We next briefly studied the scope of this enantioselective

conjugate addition by using some commercially available alkenyl-

boronic acids. The results obtained are shown in Table 1.

All the reactions were performed under the same conditions:

Rh(acac)(C2H4)2 (5 mol%), (S,S)-Chiraphos (5 mol%), a mixture

of dioxane : H2O (10 : 1), and 100 uC for 24 h.{ Conversions

between 45 and 77% were observed in all cases. Unfortunately, the

use of a great excess of boronic acid or longer reaction times

provided similar results, most likely due to the progressive

decomposition of the catalyst in the harsh reaction conditions.8

However, as the process occurs without formation of side

products, both the remaining vinyl pyridylsulfone and the final

conjugate addition product can be readily separated by standard
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silica gel chromatography to provide the desired conjugate

addition compounds in high converted product yields (85–91%).

However, the most outstanding result was the stereochemical

fidelity of the process: in all cases the enantioselectivity was

very high, ranging from 88% ee (entry 6) to . 99% ee (entry 3).

The (R) configuration of the addition product was unequivocally

established by X-ray crystal diffraction analysis of compound 4a9

(Fig. 1).

Finally, based on the high versatility of the sulfonyl group in the

formation of new C–C and CLC bonds,10 in Scheme 2 are shown

three examples illustrating the great synthetic potential of the

pyridylsulfonyl addition products in the enantioselective prepara-

tion of otherwise not easily accessible functionalized compounds

having quaternary allylic carbon centers. Thus, a-deprotonation of

2a (94% ee) with KHMDS in DME at 278 uC and addition of

either benzoyl chloride or ethyl chloroformate afforded in high

yields the corresponding acylated product 5 or 6 as 2 : 1 mixtures

of stereoisomers (Scheme 2). Further desulfonylation with

activated zinc led to the ketone 7 or the ester 8 in almost

quantitative yields. On the other hand, the one-step Julia–

Kociensky olefination11 reaction of the a-sulfonyl anion of

2a with p-fluorobenzaldehyde afforded stereoselectively the (E,E)

1,4-diene 9 in excellent yield (89%).

In summary, we have described the first procedure for the

enantioselective construction of all-carbon quaternary stereogenic

centres by a Rh-catalyzed ACA process. In particular, using

Rh(acac)(C2H4)2 as catalyst and (S,S)-Chiraphos as chiral ligand

the addition of alkenylboronic acids to b-aryl b-alkyl substituted

a,b-unsaturated pyridylsulfones takes place with very high enantio-

selectivities (88–. 99% ee). Further straightforward conversion of

the pyridylsulfonyl group into typical carbon functional groups

allows for the enantioselective preparation of a variety of function-

alized allylic compounds having quaternary stereogenic centres.

The study of other applications of the pyridylsulfonyl group as key

controlling moiety in other metal-mediated processes is underway.
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